Design of Novel Relaxase Substrates Based on Rolling Circle Replicases for Bioconjugation to DNA Nanostructures
نویسندگان
چکیده
During bacterial conjugation and rolling circle replication, HUH endonucleases, respectively known as relaxases and replicases, form a covalent bond with ssDNA when they cleave their target sequence (nic site). Both protein families show structural similarity but limited amino acid identity. Moreover, the organization of the inverted repeat (IR) and the loop that shape the nic site differs in both proteins. Arguably, replicases cleave their target site more efficiently, while relaxases exert more biochemical control over the process. Here we show that engineering a relaxase target by mimicking the replicase target, results in enhanced formation of protein-DNA covalent complexes. Three widely different relaxases, which belong to MOBF, MOBQ and MOBP families, can properly cleave DNA sequences with permuted target sequences. Collaterally, the secondary structure that the permuted targets acquired within a supercoiled plasmid DNA resulted in poor conjugation frequencies underlying the importance of relaxase accessory proteins in conjugative DNA processing. Our results reveal that relaxase and replicase targets can be interchangeable in vitro. The new Rep substrates provide new bioconjugation tools for the design of sophisticated DNA-protein nanostructures.
منابع مشابه
Self-assembled multifunctional DNA nanospheres for biosensing and drug delivery into specific target cells.
Self-assembly of three dimensional nucleic acid nanostructures is of great significance in nanotechnology, biosensing and biomedicine. Herein we present a novel class of multifunctional and programmable DNA nanostructures, termed nanospheres (NSs), with monodispersity, dense compaction and uniform size (∼ 200 nm) using only four DNAs based on not only Watson-Crick base pair hybridization betwee...
متن کاملA Glimpse into the World of Integrative and Mobilizable Elements in Streptococci Reveals an Unexpected Diversity and Novel Families of Mobilization Proteins
Recent analyses of bacterial genomes have shown that integrated elements that transfer by conjugation play an essential role in horizontal gene transfer. Among these elements, the integrative and mobilizable elements (IMEs) are known to encode their own excision and integration machinery, and to carry all the sequences or genes necessary to hijack the mating pore of a conjugative element for th...
متن کاملDNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery.
We present a facile approach to make aptamer-conjugated FRET (fluorescent resonance energy transfer) nanoflowers (NFs) through rolling circle replication for multiplexed cellular imaging and traceable targeted drug delivery. The NFs can exhibit multi-fluorescence emissions by a single-wavelength excitation as a result of the DNA matrix covalently incorporated with three dye molecules able to pe...
متن کاملInvestigating bioconjugation by atomic force microscopy
Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle co...
متن کاملA versatile platform for highly sensitive detection of protein: DNA enriching magnetic nanoparticles based rolling circle amplification immunoassay.
A novel rolling circle amplification (RCA) immunoassay based on DNA enriching magnetic nanoparticles and assembled fluorescent DNA nanotags, magnetic nanoparticles-RCA immunoassay, is developed as a versatile fluorescence assay platform for highly sensitive proteins detection.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016